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[1] #FHAF Ginzburg-Landau R BEHHE A TCHRZE ST
REAETR b R
FE.: This talk is concerned with new error analysis of a lowest—order
backward Euler Galerkin—-mixed finite element method for the time—
dependent Ginzburg—Landau equations. The method is based on a commonly—
used non—uniform approximations, in which linear Lagrange element, the
lowest order Nedelec edge element and Raviart—-Thomas face element are
used for the order parameter $\psi$, the magnetic field S$curl
\mathbf{A}$ and the magnetic potential $\mathbf{A}$§, respectively.
This mixed method has been widely used in practical simulations due to
its low cost and ease of implementation. In the Ginzburg-Landau model,
the order parameter $\psi$ is the most important variable, which
indicates the state of the superconductor. An important feature of the
method is the inconsistency of the approximation orders. A crucial
question is how the first-order approximation of $(curl \mathbf {A},
\mathbf {A})$ influences the accuracy of $\psi h$§. The main purpose is
to establish the second-order accuracy for the order parameter in
spatial direction, although the accuracy for $curl \mathbf{A},
\mathbf{A}$ is in the first order only. Previous analysis only gave
the first order convergence for all three variables due to certain
artificial pollution involved in analysis. Our analysis is based on a

nonstandard quasi-projection for $\psi$ and the corresponding more




precise estimates, including in $H {-1}$—norm. With the quasi-
projection, we prove that the lower—order approximation to $curl
\mathbf {A}, \mathbf{A}$ does not pollute the accuracy of $\psi h$. Our
numerical experiments confirm the optimal convergence of $\psi h$. The

approach can be extended to many other multi—physics models.

[2] relaxation Runge—Kutta methods: construction, analysis and
applications
ZRY PR
fE: Spatial discretizations of time—dependent partial differential
equations usually result in a large system of semi—linear and stiff
ordinary differential equations. Taking the structures into account,
we develop a family of linearly implicit and high order accurate
schemes for the time discretization, using the idea of some linearlized
methods and the relaxation techniques. The proposed schemes are
monotonicity preserving/conservative for the original problems, while
the previous linearized methods are usually not. Numerical experiments
on several typical models are presented to confirm the effectiveness

of the proposed methods.

[3] Fast ensemble methods for dual—porosity-Stokes model
LN TN
#WE: Uncertainty quantification (UQ) has been a hot research topic
recently. In this talk, we focus on the fast simulation for the
evolutionary dual-porosity—Stokes system with random input parameters.
We propose several decoupled ensemble algorithms and provide there
error estimations. Besides, the numerical tests verify our theoretical

results.



[4] Numerical schemes for some non—-divergence PDEs of second order
based on PPR techniques
SBUE 15 IRV Tl KSR YN
WE: In the talk, we review a systematic method to generate finite
difference and finite element schemes on unstructured meshes. Such
method is based on recovery technique in the finite element community.
The computed solutions can own the same superconvergence (or

ultraconvergence) property as recovered gradient and Hessian.

[5] Unconditional stability and error estimates of FEMs for the
electro—osmotic flow in micro—channels
BB TR
fE: In this paper, we will provide the the finite element method for
the electro—osmotic flow in micro—channels, in which a convection
diffusion type equation is given for the charge density $\rho e$. A
time—discrete method based on the backward Euler method is designed.
The theoretical analysis shows that the numerical algorithm is
unconditionally stable and has optimal convergence rates. To show the
effectiveness of the proposed model, some numerical results for the
electro—osmotic flow in the T—junction micro—channels and in rough
micro—channels are provided. Numerical results indicate that the
proposed numerical method is suitable for simulating electro—osmotic

flows.

[6] An efficient spectral method and its applications
5 2 i | S [ IR EANEE =57 757 4
. In this talk, an efficient spectral method will be proposed for

solving singular problems and singularly perturbed problems. Based on



the Log mapping to Laguerre, the new bases are capable of exponentially
approximating one-point singular functions and some boundary layer
functions. The related Log spectral methods are applied to some
fundamental singular problems and singularly perturbed problems,
respectively. The numerical experiments are demonstrated to verify the

high—-efficiency of the new method

[7] Regularized randomized iterative algorithms for factorized

linear systems

R TR
#E: Randomized iterative algorithms for solving the factorized linear
system, ABx = b with A € R {mX1}, B € R°{IXn}, and b € R'm, have
recently been proposed. They take advantage of the factorized form and
avoid forming the matrix C = AB explicitly. However, they can only
find the minimum norm (least squares) solution. In contrast, the
regularized randomized Kaczmarz (RRK) algorithm can find solutions with
certain structures from consistent linear systems. In this work, by
combining the randomized Kaczmarz algorithm or the randomized Gauss -
Seidel algorithm with the RRK algorithm, we propose two new regularized
randomized iterative algorithms to find (least squares) solutions with
certain structures of ABx = b. We prove linear convergence of the new
algorithms. Computed examples are given to illustrate that the new
algorithms can find sparse (least squares) solutions of ABx = b and

can be better than the existing randomized iterative algorithms for

the corresponding full linear system Cx = b with C = AB.

[8] Do we need decay-preserving error estimate for solving parabolic

equations with the initial singularity?

TafE DO



fE: The solutions with weakly initial singularity arises in a wide
variety of equations, for example, diffusion and subdiffusion equations.
When the well-known L1 scheme is used to solve subdiffusion equations
with weak singularity, numerical simulations show that this scheme can
produce various convergence rates for different choices of model
parameters. This elusive phenomenon can be found in other numerical
methods for reaction—diffusion equations such as the backward Euler
(IE) scheme, Crank-Nicolson (C-N) scheme, and BDF2 scheme. The current
theory in the literatures cannot explain why there exists two different
convergence regimes, which has been puzzling us for a long while, and
motivating us to study this inconsistence between the standard
convergence theory and numerical experiences. In this talk, we begin
with the alpha-robust estimates for L1 and Alikhanov’s schemes on
general nonuniform meshes, and then provide a general methodology to
systematically obtain error estimates that incorporate the exponential
decaying feature of the solution. We call this novel error estimate
decay—preserving error estimate and apply it to aforementioned IE, C-
N, and BDF2 schemes. Our estimates reveal that the various convergence
rates are caused by the trade—off between the two components in

different model parameter regimes.

[9] Learning Green’s Functions of Linear Reaction-Diffusion Equations
with Application to Fast Numerical Solver
13 W NS
WE: In this talk, we introduce a novel neural network method, “GF-
Net” , for learning the Green’ s functions of the classic linear
reaction—diffusion equation with Dirichlet boundary condition in the
unsupervised fashion, inspired by the rapidly growing impact of deep

learning techniques. The proposed method overcomes the numerical



challenges for finding the Green’ s functions of the equations on
general domains by utilizing the physics—informed neural network and
the domain decomposition approach. As a consequence, it also leads to
a fast numerical solver for the target equation subject to arbitrarily
given sources and boundary values without network retraining. We
numerically demonstrate the effectiveness of the proposed method by
extensive experiments with various domains and operator coefficients.
[10] Domain decomposition methods for the Stokes—Darcy—type couple
Models
MRS BRI R
WE: Domain decomposition methods for the Stokes—Darcy—type couple
Models are discussed, which can decouple the Stokes—Darcy—type systems
into some smaller sub—physics problems naturally and reduce the size
of the linear systems and allow parallel computation of the those sub-—
physics problems. For the Stokes—Darcy model with a random hydraulic
conductivity tensor, we propose the efficient ensemble domain
decomposition algorithm. The ensemble idea can result in a common
coefficient matrix for all realizations at each iteration step solving
the linear systems much less expensive while maintaining comparable
accuracy. For the Stokes—dual-permeability fluid flow model, a
parallel domain decomposition method is proposed to use the existing
well-developed solvers or codes in a flexible way to solve two single
dual-permeability equations and a single Stokes equation in parallel.
Mesh—independent convergence rates of the algorithms are rigorously

derived by choosing suitable Robin parameters.
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